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Abstract IJ In developing new pharmaceutical products it is 
often necessary to predict degradation rates at marketing tem- 
peratures from data collected on accelerated degradation taken 
at elevated temperatures. A technique for predicting degradation 
rate based on the Arrhenius equation was presented by Garrett in 
1956. While his method is characterized by ease of computation 
involved (necessary due to scarcity of computer facilities at that 
time), it violates a number of assumptions upon which least- 
squares analysis is based, and hence inferences made from the 
results can be misleading. This report presents a method based on 
weighted least-squares analysis which can easily be adapted for 
computer analysis. Comparisons are made with the method sug- 
gested by Garrett to illustrate differences in technique and the 
effect the basic assumptions have upon the results obtained by the 
two methods. A statistical test is presented for determining the ap- 
plicability of the Arrhenius relation to the data at hand. Finally, 
the technique is illustrated by application to chloramphenicol. 
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In 1956 Garrett (1) published a paper recognizing the 
economic benefits of predicting thermal stability of a 
drug from data collected at elevated temperatures. The 
method outlined by Garrett was a simple approximation 
to a method of fitting the Arrhenius relation by weighted 
least-squares analyses suggested by McBride and Villars 
(2) in 1954. The approximation suggested by Garrett 
gained a great deal in ease of computation, yet sacrificed 
in the extent to which valid inferences could be derived 
from the results. Until 1960 ease of computation was of 
primary concern due to scarcity and cost of computer 
time, but today even the smallest company can easily 
rent computer time at  a reasonable cost. However, the 
approximate solution suggested by Garrett is the stan- 
dard method used today (3 ,  4). 

The purposes of this paper are to outline a 
method for predicting stability as based on the weighted 
least-squares technique, to illustrate why weighted least 
squares should be used in lieu of the unweighted ap- 
proximation, and to present a statistical test for the 
validity of the Arrhenius assumption which can easily be 
computed from the results of the weighted method. 

Appendix 1 contains the mathematical formulas in- 
volved in the weighted least-squares analysis. 

THEORETICAL 

Arrhenius Relationship-The functional relationship between 
time and concentration of a drug stored under constant conditions 
is dependent upon order of reaction and a rate constant which 
determines speed of reaction. A thorough discussion of methods 
for picking proper order is outside the scope of this paper and the 
assumption will be made that correct order can be determined. An 
example of a typical situation is the first-order reaction given by Eq. 
1 where the logarithm of concentration at time t ,  denoted Ct, is 

linearly related to time by 

In Ct = In Co - k,t (Eq. 1) 

where r is the temperature at which storage took place and k ,  is the 
rate constant. 

The Arrhenius relationship: 

lnlk, = y + 8/r (Eq. 2) 

states that speed of reaction is dependent upon temperature; that is 
the logarithm of the reaction rate is a linear function of the recipro- 
cal of absolute temperature. It is this relationship which allows data 
taken at elevated temperatures to be used to predict the degradation 
rate at room temperature and hence estimate shelf life of the drug. 
The rate constants obtained at the elevated temperatures can be used 
to estimate the parameters in the Arrhenius equation, which in turn 
can be used to estimate reaction rate at room temperature (or any 
other desired temperature). 

The methods of estimation used in the previous procedure canvary 
from simple (and quick) eyeball techniques to  a thorough statistical 
analysis based on weighted least squares. The remaining discussion 
points out the advantages of the latter in comparison to less rigorous 
techniques. 

Simple Linear Regression-Assume a situation in which a variable 
Y is linearly dependent upon a second variable X .  Examples of such 
a situation include both Eqs. 1 and 2. A general expression for such a 
relationship is Y = a + PX. If Y could be measured without error 
for any value of X, a and P could be determined from two sample 
points and any further observations would fall on the determined 
line. 

In practice, experimental error enters due to measurement error, 
biological variation, etc. Hence, an observed Yi is related to its cor- 
responding Xi by Eq. 3, 

Y,  = a + px, + ci (Eq. 3) 

where a + PXi  is the underlying relationship and ei is the error term. 
This situation is illustrated in Fig. 1 in which the dotted line repre- 
sents the true but unknown relationship and the error is the vertical 
distance from the point to the dotted line. The statistician’s problem 
is to estimate 01 and 0. A number of methods are available such as: 
arbitrarily saying a = 47 and p = - 10, fitting the data by eye, and 
least-squares analysis. The first method is obviously of no value, the 
second might prove useful if rough guesses are desired; but if a 
thorough analysis including extrapolation, confidence statements, or 
tests of hypotheses is desired, a proper least-squares analysis must be 
performed to make better use of the data. 

The conditions of a simple least-squares analysis are as follows: 
assume a sequence of n observation pairs ( YI, XI), ( Yz, XZ), . . . 
(Y,, X,> represented by the points in Fig. 1. If Eq. 3 holds for all 
i = 1, . . . , n, and if further (a) the additive errors E are independent 
of one another; (b)  the distribution of the error term has mean zero; 
and (c)  the variance of each t i  is uZ,  a constant not depending upon i 
or Xi;  then the “best” estimates ( 5 )  for a and /3 are those which will 
minimize the right-hand side of Eq. 4. 

n n 

i =  1 i = l  
c €2 = c (Yi - a - pxiy (Eq. 4) 

In Fig. 1 the least-squares line is represented by the solid line and 
is the one which minimizes the sum of squared distances in the 
vertical direction from sample points to fitted line. 

Note again assumptions (a) that the error ci is additive, and (c) 
that the EOS have a common variance; that is, dispersion of error is 
not proportional to Xand hence to the expected value of Y. 

The results of a least-squares analysis are not restricted to a: and 8, 
the estimates of a and 8, respectively. Equation 5 gives the variance 
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Figure 1-Example of regression situation. Broken line represents 
true unknown relationship; solid line represents least-squares Jit to 
data. 

of the estimate of in which uZ is the variance of the EI.s. 
n n 

The smaller the variance of the estimate the greater is the confi- 
dence which can be placed in it being close to the true unknown 
parameter. 

One further estimate which can be obtained is given by Eq. 6. 

This is an estimate of u z ,  the variance of the error term. This estimate 
is just an average of the squared deviations of the sample points 
from the fitted line. 

Application of Weighted Least-Squares to Stability Swdies- 
Assume an experiment in which a drug has been stored at various 
temperatures. Assays are made throughout the period of the ex- 
periment to estimate concentration as a function of time. According 
to the Arrhenius relation a faster degradation is expected to 
occur at higher temperatures; hence, assays for the higher tem- 
perature data might be made more frequently but for a shorter 
period of time. 

A simple least-squares analysis is made by ctting Eq. 1 to the data 
collected at each temperature T to determine k,, the estimate of deg- 
radation rate for that temperature. The assumptions mentioned 
previously as required for a valid least-squares analysis will be suffi- 
ciently satisfied except for those nonzero-order reactions in which 
the range over which concentration varies is extremely large. 

Along with each estimate of a k ,  is an estimate of the experimental 
error variance u 2  as given by Eq. 6 and the coefficie_nt by which u2 
must be multiplied in order to obtain the variance of k,, the estimate 
of k,. This coefficient is given by 

n ,  
1/ c ( t i  - i)2 

i = l  

where ti represents the times at which the assays are made, nT repre- 

sents the number of assays made at temperature T, and t = x ( t i / n T ) .  

Figure 2 shows the least-square curves for data collected on chlor- 
amphenicol at temperatures 32,34,42,58, and 71 '. As each analysis 
yields an estimate of the same experimental error variance u2, these 
estimates can be combined to form one single estimate of error 
variance. This estimate will be used later in the analysis and will be 
referred to as the combined variance estimate denoted SC2. 

Figures 3 and 4 illustrate the reason for using weighted least 
squares for fitting the Arrhenius relationship. Figure 3 is a plot of 
the various k,  estimates against reciprocal absolute temperature 
using a linear scale on both axes. Each vertical line represents a 95 
confidence interval for the corresponding k,. The horizontal mark 
indicates the point estimate. The width of each confidence interval 
depends upon the coefficient given by Eq. 7, that is the times and 
number of observations taken at each temperature. 
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Figure 2-Last-squares degradation of chloramphenicol data. 

Figure 4 is a plot of the same estimates and same confidence 
intervals, but drawn on semilogarithm paper. Hence the scale on 
the vertical axis is log,, k,. Note that the length of the confidence 
intervals for the k ,  at lower temperatures have been lengthened 
relative to the higher temperatures. 

A simple least-squares fit, represented by the broken lines in Fig. 4, 
was applied to the model: 

(Eq. 8) Cr = e~ + 617 + t 

that is, In k ,  = y + L ~ / T  + 6 where k ,  is the estimate of k,  obtained in 
the previous analyses, and E is an additive error to In k ,  with com- 
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Figure SArrhenius  fit to degradation constatits with 71 O data in- 
cluded. Vertical lines represent 95 % confidence interuals. Solid line 
is the weighted least-squares line; broketi line is the unweighted least- 
squares line. 

Vol. 59, No. 4 ,  April 1970 0 465 



10-2 

c z a c m 
Z 
0 
0 
w c 
U a 

lo-’ 

- 
- 

- - - - 
- - 
- 

2.9 3.0 3.1 3.2 3.3 3.4 3.5 
RECIPROCAL ABSOLUTE TEMPERATURE x 103 

Figure 4-Arrhenius fi t  to degradation constants with 71 a data in- 
cluded. Vertical lines represent 95 % confidence intervals. Solid line 
is the weighted least-squares line; broken line is the unweighted 
least-squares line. 

mon variance for all 7. But the true error in i, is ad_ditive to k,, not 
In k,, because of the method of derivation of k,; further, the 
variances of the errors in the i, differ according to the coefficient 
given in Eq. 7. This is illustrated by the extreme difference in the 
lengths of the lines representing the confidence intervals in Fig. 4. 
The simple least-squares analysis assumes these lengths to be the 
same. The effect of the simple least-squares analysis is to force the 
Arrhenius equation through the low temperature data and essen- 
tially ignore the high temperature data. Hence, mutt more faith is 
placed in the point estimates of the low temperature k, than is war- 
ranted. Finally, the usual confidence statements on extrapolated 
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Figure 5-Arrhenius fit to degradation constants with 71 a data ex- 
cluded. Vertical lines represent 95 confidence intervals; solid line 
is the weightedleast-quares line. 

degradation rates (such as at room temperature) cannot validly be 
made. 

Appendix 2 outlines justification for applying the method of 
weighted least squares to the model: 

,$ 7 -  - eY + 617 + ET (Eq. 9) 
,. 

where E ,  is now an additive error to k, in the estimate k ,  and hcs 
variance uT2. The method of weighted least squares weights each Ink, 
in inverse proportion to the square of the width of its confidence 
interval. The weighted least squares fit is represented by the solid 
lines in Figs. 3 and 4. 

Statistical Test of Arrhenius Assumption-The benefits of the 
weighted least-squares analysis are many. First, the estimates of the 
parameters of the Arrhenius equation meet the statistician’s re- 
quirements as the “best” which can be obtained. Second, a con- 
fidence interval can easily be constructed around the rate constant 
for any desired temperature, such as room temperature. Finally, a 
second estimate of u2, the variance of t_he original experimental 
error, can be obtained from the fit of the k ,  to the Arrhenius equa- 
tion. This estimate of variance will be independent of the combined 
variance estimate SCz based on the original individual temperature 
analyses, and it will be referred to as the Arrhenius variance estimate 
and will he denoted Sa2. Its formula is included in Appendix 1. 

The advantage of the two estimates of error variance is as follows. 
Sa2 is dependent upon the validity of the Arrhenius assumption. If 
the Arrhenius relationship does not hold, SQ2 will tend to be large 
relative to the true experimental error variance, and therefore large 
relative to SCz which does not depend upon the Arrhenius assump- 
tion. By dividing the Arrhenius variance estimate SQz by the com- 
bined variance estimate SC2, one obtains an F statistic. By comparing 
the computed F with a tabled F, which can be found in any ele- 
mentary statistics book (6), the experimenter can determine the 
validity of the Arrhenius assumption. 

A significantly large F ratio would indicate the Arrhenius relation- 
ship does not hold. If the Arrhenius assumption is shown to be sig- 
nificantly invalid (that is the dispersion around the Arrhenius line is 
greaterthancould beattrihuted to chancevariation in the kr), then the 
least-squares line is not valid and should not be used for predictive 
purposes. Further, no method of fitting a straight line would be valid 
for predictive purposes. 

On the other hand, if the Arrhenius fit does not yield a significant 
F value, the high as well as low temperature rate constantsAfit the 
Arrhenius line within the measurement error involved in the k,, and 
hence all rate constants should be weighted according to their error 
variances. 

Example-The above analysis was performed on a chloramphen- 
icol solution. The results of the analysis are given in Table I. The 
initial analysis was performed at five temperatures: 32, 34,42, 58, 
and 71 ’. Both the weighted and unweighted least-squares analyses 
were performed in order to  make a comparison between the two 
methods. The two Arrhenius curves are presented in Figs. 3 and 4. 
Note that the estimate of degradation from the unweighted method 
for 23 would have been 2.91 X 10-4 and the analysis terminated at 
this point. This compares with an estimate of 8.01 X computed 
by the weighted method on the same data. 

At this point in the weighted analysis the F test was applied. The 
computed value was 36.95 with 3 degrees of freedom in the 
numerator and 167 in the denominator. This value is extremely sig- 
nificant (F = 5.70 is significant for (Y = 0.001), indicating the Ar- 
rhenius assumption invalid. Upon investigation a precipitate was 
found to have formed in the 71 O data soon after termination of col- 
lectingdata at that temperature. Hence, these data were excluded from 
the analysis and another weighted least-squares analysis was per- 
formed. The Fratio testing the fit of the four remaining temperatures 
to theArrhenius relationship yieldedavalueF = O.lllOwith2 degrees 
of freedom for the numerator and 136 for the denominator. Such a 
small value indicates an extremely good fit to the Arrhenius relation- 
ship. The weighted least-squares line is plotted in Fig. 5. No analysis 
was performed by the unweighted method omitting the 71 ’ tempera- 
ture to emphasize the fact that the unweighted method would not 
have led to  the detection of lack of fit t o  the Arrhenius relationship. 

Of 
primary concern is how well this estimate, based on accelerated data 
collected over an 89-day period, compares with the value observed 
on production batches. The actual values observed on two separate 

The new estimate of degradation rate at 23’ was 2.12 X 
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Table I-Results of Analysis on Chloramph enicol Study 

Tempera- 
ture, 

“C 

32 

34 

42 

58 

71 

23 

Reciprocal d o m p u t e d  from Raw Data- 
Absolute n K: zk 

Temperature a 95 Confidence Limits 

3.28 x 10-3 -0.313 7.03 x 10-4 
f i:32 x 10-4 
* 1.94 x 10-4 

3.26 x 10-3 -0.227 9.72 x 10-4 
3.18 x 10-3 -0.232 2.36 x 10-3 + 4.80 x 10-4 
3.02 x 10-3 -0.215 1.55 X 10’2 

2.91 x 10-3 -0.234 2.61 X 
* 1.49 x 10-3 
+ 1.67 x 10-3 

3 . 3 8  x 1 0 - 3  

Kr Predicted from Arrhenius Fit 
Unweighted Weighted Weighted 

with 71 O Data with 71’ Data without 71 O Data 

1.72 x 1 0 - 3  7.02 x 10-4 7.96 x 10-4 
9.87 x 10-4 2.03 x 1 0 - 3  9.07 x 10-4 
2.28 x 10-3 3.82 x 10-3 2.45 x 10-3 

1.24 X 1.54 X low2 1.07 X 

3.39 x 10-2 2.98 x 6.12 x 
2.91 X 8.01 x 10-4 2.12 x 10-4 

production batches, with more than 2 years of data on each, are 2.07 
X and 2.10 x 

APPENDIX 1 

Suppose Yi = + X& + . . . + Xi,,,& + ei for i = 1,2, . . . 
n. Define Y to be the n X 1 matrix [ Yi], X the n X m matrix [Xij], /3 
the m X 1 matrix [/3J, and e then X 1 matrix [ei]. Then then observa- 
tions satisfy Y = X@ + e. Further, suppose the covariance matrix 
for E is u2Vfor a known n X n matrix V and unknown scalar u2. 
That is the expectation of [ee’]  = a2V where e’ is the transpose of e. 

The estimate of f l  is 

j == (x ’v - lx ) - tx ’v - l  y 0% 10) 
The estimate of ua is 

S2 = (Y’V-1Y - Y’V-1 X;)/(n - m) (Eq. 11) 
n 

The covariance matrix for the B vector is 

(X‘  V-Ix)-‘ u2 (Eq. 12) 

which can be estimated by replacing u2 by S2. To estimate a value on 
the true line Yo = XOI 81 + Xo2p2 + . . . + X o m p m  = X O ~ ,  use the 
estimate: 

Po = xo j (Eq. 13) 

UY02 = Xo(X’V-~x) -~X, ’u~  (Eq. 14) 

The variance of the estimate Xo$ is 

which can be estimated by replacing u2 by S2. A (1 - a) 100% 
confidence interval on YO can be constructed as 

X O ~ ^  f Lrn( 1-“/2)[Xo( X’ V- l x ) - l X ~ ’ S z ] l / ~  (Eq. 15) 
where f ~ - m ( l - ~ ~ ~ )  is the point on Student’s t distribution with n - m 
degrees of freedom which is exceeded with probability 42. 

To apply the weighted analysis to the degradation problem, first 
perform an individual analysis on the data at each temperature 7 

setting V = I, then X n identity matrix. The matrix Xis n X 2 with 
each element of the first column one (1) and the second column the 
respective times i i  at which assays were made. Y is the vector of the 
appropriate function of concentration (for a first-order reaction, Y is 
the vettor of the logarithms of concen!ration). The second element 
of the p vector in Eq. 10 is the estimate k, of the rate constant. 

Cajl ur the second row, second column element of (X’V-lX)-l ,  vr 
= (kr)2/uT and ST2 the computed value for Eq. 11 at temperature 
7 based on n = n, and m = 2. 

The combined variance estimate for the weighted least-squares 
analysis is 

S ~ Z  = C (n, - 2)~,2/ C (nr - 2) (Eq. 16) 
all r all r 

The method of fitting the Arrhenius relationship t,“ the it., is as fol- 
lows. Set the Y vector to be the logarithms of the kr’s. The Xmatrix 

has each element of the first column one (1) and the second column 
the reciprocal absolute temperatures, i.e., 1 / ~ .  The matrix V, 
which is n X n where n is now the number of temperatures at which 
data were collected, has the corresponding u, on the main diagonal 
and zeros everywhere else. 

The Arrhenius variance estimate S,2 is computed at this point by 
Eq. 11 where n is the number of temperatures and m = 2. The F 
statistic is 

F = Sa2/ScZ (Eq. 17) 

having n - 2 degrees of freedom in the numerator and Z (n, - 2) 
degrees of freedom in the denominator. Reject the applicability of 
the Arrhenius relationship for large F. 

Estimates of logarithm of rate constant at absolute temperature 
TO can be made from the results of the Arrhenius fit by setting XO = 
(1/r0) in Eq. 13. A confidence interval for logarithm rate constant at 
TO can be established by Eq. 15. Once these have been done the 
estimate of time for a given drug to  degrade from an initial concen- 
tration Co to a minimal concentration C,,, can be estimated and a 
confidence interval for length of time for such a degradation can be 
constructed. 

all T 

APPENDIX 2 

Consider a set of n observations (y l ,  xl), ( y ~ ,  x2), . . . , (YR,  X R )  where 
xi and yi are related by 

y< = ea+m + Ei (Eq. 18) 

Denote by Fi the true value of y associated with xi; that is Fi = 
Pi-p2i. Then pi = yd - ei .  Expanding lny, = ln(yi - ei) in a 
Taylors series about y i  gives 

1 
Yi 

In j+ = a + /3xi = In y i  - ei + remainder (Eq. 19) 

wheretheremainder isa termof order [ e i / y i ] a .  Provided e i / j i  is much 
less than 1, the remainder can be ignored. This gives 

(Eq. 20) 

where the new error term, call it e,*, is now e i / j ~ i .  It follows im- 
mediately that the mean of ti* is zero and the variance of ei* is 
uti*/Fi2. Approximating pi by yi gives the weighting used in the 
Arrhenius analysis described in Appendix 1. 

In yi s (Y + Bxi + e&i 
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Whole Body Measurements of ‘”‘I-Tetracycline 
as an Index of Skeletal Growth 

R. G .  WOLFANGEL*, S. M. SHAW, and J. E. CHRISTIAN 

Abstract 0 A derivative of tetracycline was tagged with 1311 and 
administered to rats. Whole body retention of the tetracycline was 
determined by sequential measurements of whole body radio- 
activity. Statistically significant differences of whole body burdens 
were found for two age groups of rats (100 g. versus 200 g.); the 
younger animals retaining a greater portion of the administered 
tetracycline. Subsequent distribution analysis indicated that whole 
body radioactivity measurements did not precisely assess skeletal 
burdens of 13Wabeled tetracycline because variable amounts of 
tetracycline persisted in soft tissue for prolonged intervals after 
injection, but did provide estimates of skeletal burdens which could 
be used to recognize differences in skeletal growth rate between 
groups of young and mature rats. The whole body counting tech- 
nique may be applicable for the study of metabolic skeletal dis- 
orders. 

Keyphrases 0 1311-Tetracycline-skeletal growth index, whole body 
measurements 0 Growth, skeletal-index, radioiodinated tetra- 
cycline 0 Paper chromatography-analysis, identity c] UV spectro- 
photometry-analysis, identity Scintillation counting, whole 
bod y-analysis 

Since the initial observations of tetracycline-induced 
fluorescence of bones by Rall et al., investigators have 
been examining tetracycline fixation in mineralized 
tissue (1). The following has been reported concerning 
the deposition of tetracycline in bones and teeth; deposi- 
tion occurs after introduction by any route, but is 
greatest following parenteral administration (2) ; tetra- 
cyclines are actively deposited at all sites of newly min- 
eralizing bone and are relatively permanently fixed in 
the bone until resorption occurs (3, 4). The quantity of 
tetracycline deposited in bone is proportional to animal 
age and the dose administered (5, 6) ,  and the presence 
of tetracycline in bone or teeth can be readily detected 
by the appearance of a bright yellow fluorescence under 
UV irradiation (7,8). 

Tetracycline bone labeling, followed by microscopic 
measurements of the width, area, or volume of yellow 
fluorescent zones found in bone sections, is used as an 
index of skeletal metabolic activity (9-11) such as ap- 
positional growth rate, radial rate of osteon closure, 
and osteon maturation rate. Direct determinations of 

the total quantity of tetracycline bound to the skeleton 
might aIso provide an index of skeletal metabolic ac- 
tivity ; if so, the necessity of skeletal biopsy, sectioning, 
and tedious fluorescence microscopy currently employed 
for tetracycline skeletal observations would be allevi- 
ated. Thus, 1311-labeled tetracycline was prepared and 
used to conduct animal studies. Whole body measure- 
ments of tetracycline retention, following administra- 
tion of labeled tetracycline, were investigated for possi- 
ble value to assess skeletal metabolic activity in young 
growing rats as compared to older mature rats. The 
accuracy of whole body counting for the determination 
of the total quantity of tetracycline bound to the 
skeleton was established by the direct measurement of 
labeled tetracycline bound to the entire skeleton of the 
two age groups of rats, as well as the residual amount of 
tetracycline remaining in the soft tissue of the animals. 

METHODS 

Synthesis and Purity-Hlavka et u/. (12) reported the prepara- 
tion of 7-iodo-6-demethyl-6-deoxytetracycline (766 tet) by dissolving 
6-demethyl-6-deoxytetracycline (66 tet) and N-iodosuccinimide 
(NIS) in concentrated sulfuric acid at 0”. By substitution of 1 ° * 1  

for stable iodine, 7-radioiodo-6-demethyl-6-deoxytetracycline (* 766 
tet) was prepared in this laboratory according to Hlavka’s direc- 
tions. The 1311-label was introduced by the preparation of N-131iodo- 
succinimide (N*IS) by modification of the method of Benson et a/.  
(13). Aqueous solutions of NalalI1 (25-75 mc.) were transferred 
to a test tube containing 2 ml. of carbon tetrachloride, and 1 ml. of 
NaI carrier ( 5  mg./ml.) was added. The test tube was fitted with a 
rubber stopper through which a dropping pipet, filled with concen- 
trated nitric acid, had been inserted. Nitric acid was then added to 
the water-carbon tetrachloride mixture. The closed tube was left 
for 18-24 hr., during which time free iodine was formed and dis- 
solved in the organic liquid. The aqueous overlayer was removed 
with a micropipet allowing the 131T2 in the carbon tetrachloride to 
remain in the test tube. Stable elemental iodine (1 g.) was placed in 
an amber 5-dr. vial, the cap lined with Teflon, and 5 ml. of sodium- 
dried, distilled dioxane added. The solution of carbon tetrachloride, 
containing 13%, was transferred to the vial. The test tube was 
rinsed with 1 ml. additional carbon tetrachloride, and the 1 ml. 

1 Purchased from Nuclear Science and Engineering Corp., Pitts- 
burgh, Pa. 
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